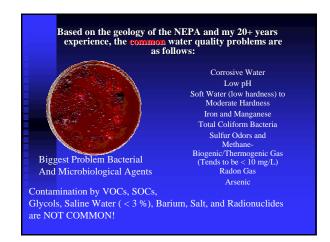


Target Audience Stakeholders Community Advocates and Scientists Health Related Professionals Municipal and Local Officials Water Supplies and State Regulators

What is the Marcellus Shale Factor? We have been educating private wellowners for 20+ years- but it was difficult to get citizens to test their well water. It looks clear – I am not sick – It is fine. The Marcellus Shale Factor – Baseline Testing for Natural Gas Development is conducting Testing and Citizens are be told they have a Problem NOW. Based on Private Well Construction and Placement - Some Private Wells may be the pathways for Contamination. DO YOU Know that 30 to 50 % of Private Wells in PA produce water that does not meet the Drinking Water Standards?? WE Support the Citizen Groundwater Database at Wilkes University!


		nes served l vater syster		Avg. Change in	% of all homes	% of all homes
County	1980	1990	2000	homes served by private water systems per year	served by public water	served by private water system
Bradford	13,443	16,865	20,287	+342	37	63
Carbon	6,594	12,235	17,876	+564	55	45
Lackawanna	9,952	12,745	15,538	+279	86	14
Luzerne	19,994	24,662	29,330	+467	82	18
Monroe	21,129	37,246	53,363	+1612	32	68
Pike	9,441	16,875	24,309	+743	45	55
Sullivan	2,147	4,727	7,307	+258	13	87
Susquehanna	9,423	15,212	21,001	+579	25	75
Tioga	9,126	11,888	14,650	+276	35	65
Wayne	9,913	19,097	28,281	+918	33	67
Wyoming	7,236	8,657	10,078	+142	27	73
Region	118,398	180,209	242,020	+562	43	57

	Time	Period	Deposit or Rock Type
	0 to 1.8 million years	Quaternary – Glaciation	sand, silt, clay, and gravel
	1.8 to 290 million	Tertiary to Permian	Not present (eroded and weathered)
0	290 – 320 million	Pennsylvanian	Llewellyn (coal) and Pottsville (minor coal)
) E	320 – 354 million	Mississippian	Mauch Chunk Pocono and Spechty Kopf
3	354 - 417 million	Devonian	Catskill Formation Trimmers Rock Formation Mahantango Formation Marcellus Formation (Black Shale)- Target Onondaga Formation
+	417 – 443 million	Silurian	(calcareous sandy shale)

Quick Questions?

- Have I mentioned that these problems have nothing to do with Marcellus Shale?
 - ◆ These background and baseline issues have nothing to do with Marcellus Shale
 − 50% of Private Wells DO not meet the drinking water standard.

Drinking Water Regulations

The Safe Drinking Water Act (SDWA), passed in 1974 and amended in 1986 and 1996, gives the Environmental Protection Agency (EPA) the authority to set drinking water standards.

These standards are divided into two broad categories: Primary Standards (NPDWR) and Secondary Standards (NSDWR).

9/29/2011

16

Primary Standards (NPDWR)

National Primary Drinking Water Regulations

Primary standards protect drinking water quality by limiting the levels of specific contaminants that can adversely affect public health and are known or anticipated to occur in water. They take the form of Maximum Contaminant Levels or Treatment Techniques.

Examples: Arsenic, Lead, MTBE, total coliform, Giardia, Trihalomethanes, Asbestos, Copper, Benzene, Trichloroethane, etc.

29/2011

Secondary Standards

National Secondary Drinking Water Regulations

These standards were established more for cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor or color) in drinking water.

The secondary standards include: aluminum, chloride, color, corrosivity, fluoride, foaming agents, iron, manganese, odor, pH, silver, sulfate, total dissolved solids, and zinc.

9/29/2011

18

Private Wells Not Regulated

- Private Wells Are Not Regulated under Safe Drinking Water Act
 - ◆ EPA NO
 - ♦ PADEP NO
 - ◆ County Very Few Counties in PA
 - ◆ Townships some have basic ordinance on placement- some have comprehensive requirements- but most have nothing.

Private Wells (They) - The Facts-**B**aseline Conditions

- Are they Regulated?

 Not really no state-wide construction standard
- Not Classified as a Regulated Source
- Are they Permitted?
- May be the Licensed Well Driller Submitted a Log
- Maybe a permit issued at the local level
- Are they Tested?

 - Not required- Data not stored
 Some contain elevated levels of bacteria, barium, salt, arsenic, etc should we be concerned.
- Do we know where they are located?

 - Maybe +/- a few hundred feet.
 PaGWIS PA Groundwater Information System

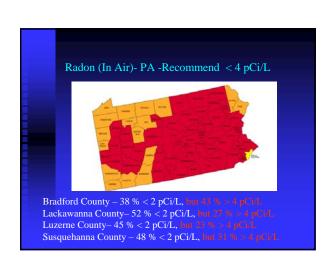
Before Marcellus Shale Development What was the Quality of Private Well Water?

A USGS survey found that 70% of private wells were contaminated. This contamination could result in acute or chronic health concerns (1996).

Testing Conducted under my supervision at Wilkes University in through out the United States indicates that 30 to over 50 % may be contaminated - Mostly by Total Coliform Bacteria (1989 – 2011).

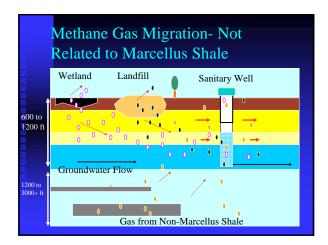
PSU – Master Well Owner Network suggests that 33 to 50 % of Private Well Owners in PA may have some

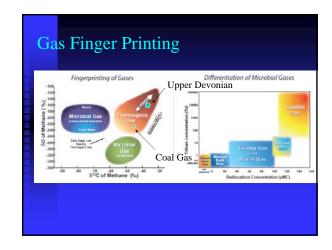
Most Contamination appears to be associated with Total Coliform Bacteria



- Insects, Larvae and Nests / Egg Masses
- Mouse Colonies
- Snakes
- Beehives
- Mud when casing to close to ground

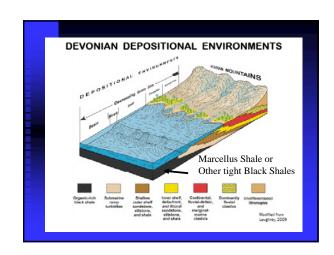
Therefore – In some cases - the Private Wells are Facilitating Groundwater Contamination.

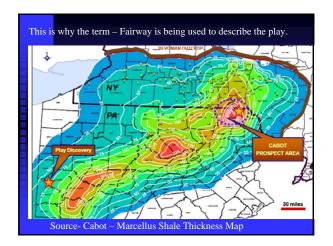




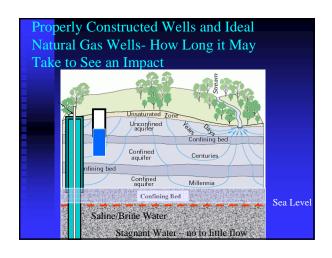
Methane in Water

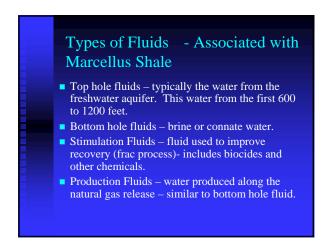
- Methane has been a hidden issue in NEPA.
- The gas is colorless, tasteless, and odorless and there are no known health effects.
- Potential concerns relate to flammability/ explosiveness of gas.
- Background appears to range from nondetect to over 20+ mg/L (highly variable) in Northeast Pennsylvania.
- I light my first well water sample in about 1989- thanks to methane gas.

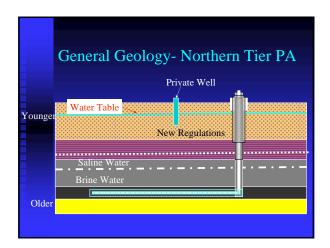


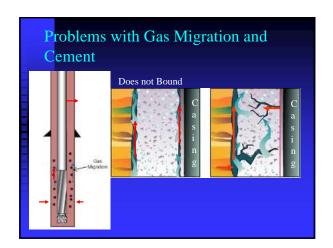


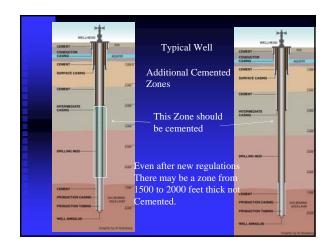
	Time	Period	Deposit or Rock Type
	0 to 1.8 million years	Quaternary – Glaciation	sand, silt, clay, and gravel
	1.8 to 290 million	Tertiary to Permian	Not present (eroded and weathered)
O L	290 – 320 million	Pennsylvanian	Llewellyn (coal) and Pottsville (minor coal)
D E	320 – 354 million	Mississippian	Mauch Chunk Pocono and Spechty Kopf
R	354 - 417 million	Devonian	Catskill Formation Trimmers Rock Formation Mahantango Formation Marcellus Formation (Black Shale)- Target Onondaga Formation
+	417 – 443 million	Silurian	(calcareous sandy shale)

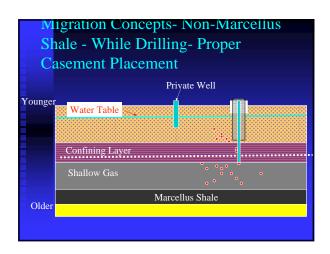


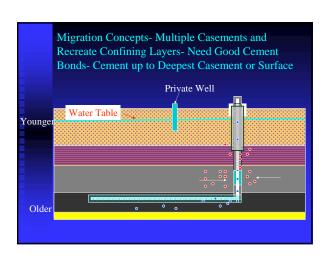


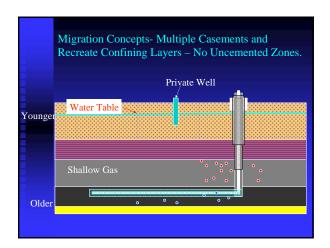


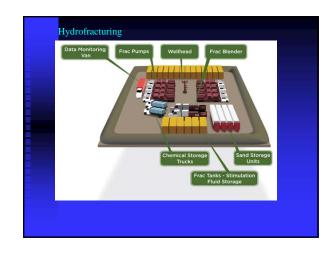


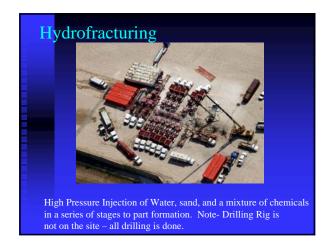


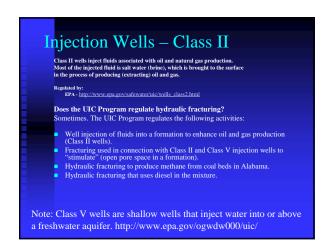


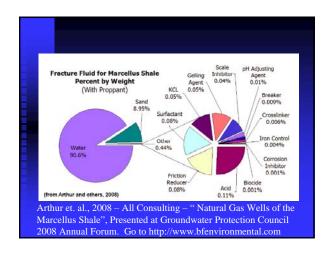












Concerns Related to Marcellus Shale

- Based on Location in Community Location additional planning, education, and response plans are needed. In general, the issues are related to the following:
- - Erosion and Sedimentation
 - Volume of Water Used In Hydrofracturing- 2 to 9 million gallons
 - Loss of Freshwater Aquifer or contamination by brine water and drilling fluids.
 - Drilling fluids may contain environmental contaminations (metals and organics).

 - Impacts to Roadways, Tourism, and Ecology
 Noise Levels by be at a Nuisance Level for the Public
 Air pollution Partial Combustion, Methane Releases,

Active Marcellus Production Site -Frac Fluid Chemistry – I may concern is Surface Spills and Releases!

Typically Frac Water is comprised of clean or recycled water with a low probably for scale formation, but treated effluents and other sources being used. The components include:

Friction Reducer - anionic polymer high molecular weight (hold frac sand and other particles)

Wetting Agent- nonionic surfactant – reduce surface tension and improve frac water flowback.

Biocides- control growth or regrowth of microorganisms.

 $Scale\ Inhibitor-phosphate\ based\ chemicals\ to\ inhibit\ precipitate\ formation$

Industry has released chemicals used - Great Website http://www.fracfocus.org

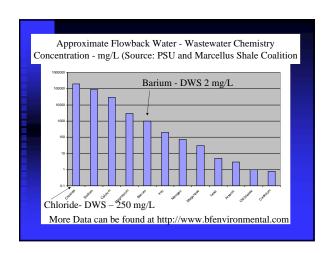
Flowback Water Chemistry

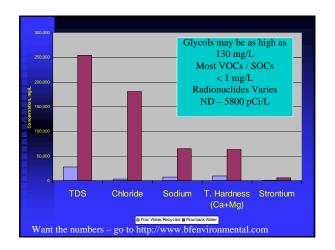
Flowback water is generated from drilling and it is what gets produced from the first 5% of water returned after a well is started

Parameter	Frac 1	Frac 2	Frac 3	Frac 4
barium mg/l	3,310	2,300	7.75	4,300
calcium mg/l	14,100	5,140	683	31,300
iron mg/l	52.5	11.2	211	134.1
magnesium mg/l	938	438	31.2	1,630
manganese mg/l	5.17	1.9	16.2	7.0
strontium mg/l	6,830	1,390	4.96	2,000
dissolved solids mg/l	175,268	69,640	6,220	248,428
suspended solids mg/l	416	48	490	330
chemical oxygen demand mg/l	600	567	1,814	2,272

May contain elevated levels of trace metals, nitrogen, bromide, uranium, and hydrocarbons. Most of the dissolved solids includes chloride and sodium.

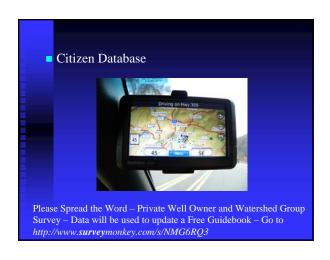
Source: http://www.prochemtech.com/

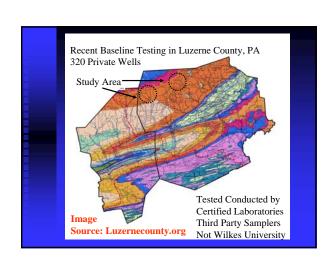

Production Water


Produced water is wasted water that accompanies oil extraction and is high in saline. Typically, separated stored on site and then hauled to treatment/disposal facility.

Parameter	Result	Parameter	Result
pH	4.79	conductivity mmhos	366,600
total oil/grease mg/l	9	chemical oxygen demand mg/l	2,332
surfactants mg/l	105.7	barium mg/l	690
calcium mg/l	23,200	iron mg/l	160
magnesium mg/l	2,240	manganese mg/l	10.1
strontium mg/l	732	dissolved solids mg/l	224,300
suspended solids mg/l	33		

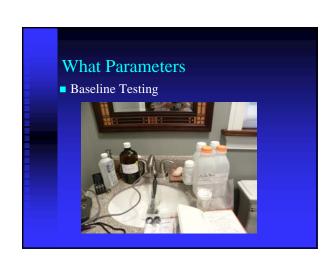
May contain elevated levels of trace metals, nitrogen, bromide, uranium, and hydrocarbons. Most of the dissolved solids includes chloride and sodium.


Source: http://www.prochemtech.com/



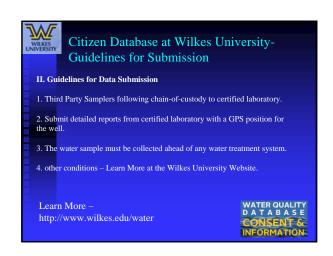
Concerns Related to Marcellus Shale In general, the concerns are related to the following: Surface Spills and Releases Near Surface Methane Gas Migration Pushes and Slugs associated with Improper Cementing and not Properly Sealing the Existing Confining Layers Improper Disposal of Brines Freshwater Aquifer Contamination by brine water and drilling fluids/ muds. Drilling fluids does contain environmental contaminations (metals and organics).

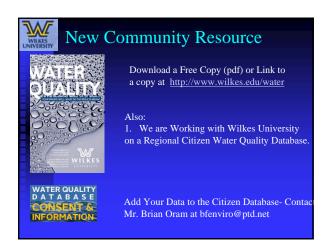
Frac Water Chemical Disclosures FracFocus"- http://fracfocus.org/. - the hydraulic fracturing chemical registry website. Information is also in the well permit and on-site. This website is a joint project of the Ground Water Protection Council Interstate Oil and Gas Compact



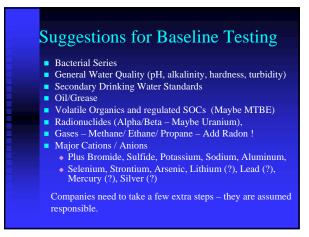
What are Phthalates?

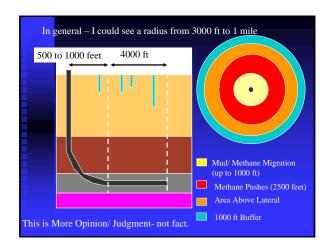
- Used as Plasticizers- is a substance which when added to a material, usually a plastic, makes it flexible and easier to handle.
- Bis(2thylhexylphthalte) (DEHP) DW Standard 6 ppb – GI problems, possible endocrine disruptor and carcinogen.
- Recent Testing Highest Value was 60 ppb.
- How did this get in the aquifer?

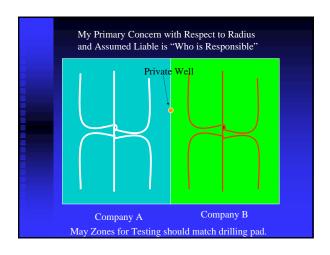

The Marcellus Shale Factor- The Truth about Private Wells In 1996 – we knew 50% of Private Wells in PA where contaminated – But What Did We DO? The Marcellus Shale Factor or the Development of this resource is NOW bringing this problem to the surface. Baseline Testing is being conducted and more problems with groundwater quality are being identified. What do we do now? What is the Risk? What are the pathways to Contamination/Impact? How should Risk be Managed? What to Test For as Part of Baseline Testing?

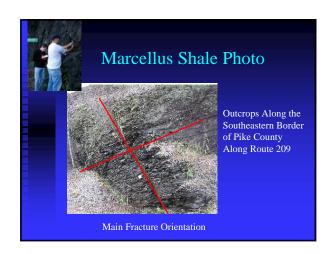

Some Private Wells may be the pathway to Contamination.

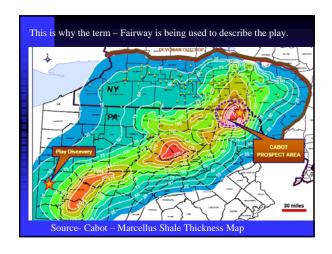
Suggested Baseline- For Citizens Testing Package # 1 Recommendations Total Coliform with e. coli confirmation, chloride, sodium, bromide, barium, pH, total dissolved solids, MBAS, iron, manganese, and methane/ethane. Testing Package # 2 Recommendations Package # 1- plus T. Hardness, Magnesium, Selenium, Strontium, Conductivity, Calcium, Zinc, Alkalinity, Arsenic, Nitrate, Total Suspended Solids, Sulfate, Oil & Grease, and 21-VOCs/MTBE. Testing Package # 3 Recommendations Package #1 and # 2 - plus Potassium, Sulfide, Ammonia, Acidity, Nickel, Gross, Alpha/Beta, Lead, and Uranium. It may be advisable to add Glycols, Radon in water, and other organics and inorganics. Depending on surrounding land-use, use of geothermal wells, and past history. http://www.wilkes.edu/water (Fact Sheet - Recommended Baseline)

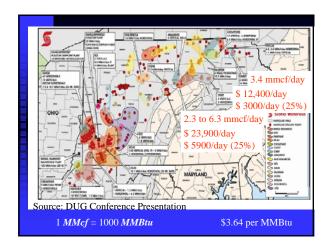


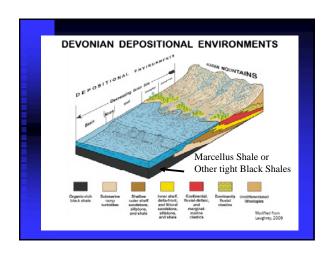


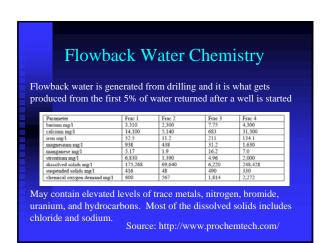


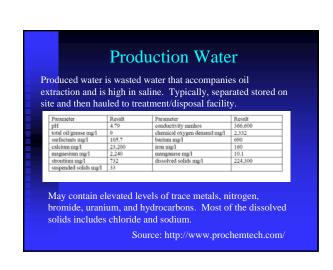


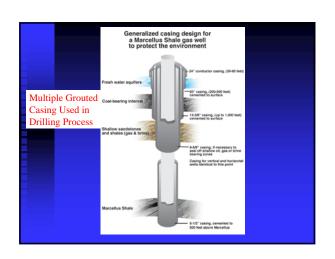


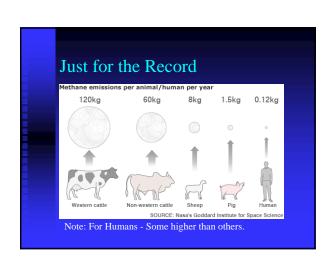


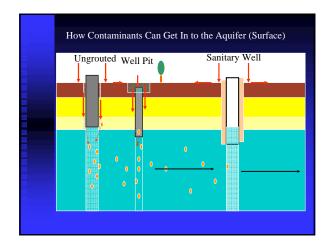









Parameter	Units	Concentration	PWS	MultipleAb PWS Stand
Aluminum	mg/L	1.2	0.2	6
Arsenic	mg/L	0.014	0.01	1.4
Barium	mg/L	410	2	205
Iron	mg/L	17	0.3	56
Manganese	mg/L	0.89	0.05	17.8
Hardness	mg/L	1750	500	3.5
T. Dissolved Solids	mg/L	31324	500	62
Nirate @ N	mg/L	90.1	44	2
pH	su	6.73	6.5 - 8.5	oK
Bromide	mg/L	61.8	0.01	6180
Chloride	mg/L	27000	250	108
Gross Alpha	pCi/L	223.3	15	15
Gross Beta	mrem/yr (Sr)	38.65	4	10
Radium 228	pCi/L	18.55	5	4
Radium 226	pCi/L	69.63	5	14



Suggestions for Baseline Testing Bacterial Series General Water Quality (pH, alkalinity, hardness, turbidity) Secondary Drinking Water Standards Oil/Grease Volatile Organics and regulated SOCs (Maybe MTBE) Radionuclides (Alpha/Beta – Maybe Uranium), Gases – Methane/ Ethane/ Propane – Add Radon! Major Cations / Anions Plus Bromide, Sulfide, Potassium, Sodium, Aluminum, Selenium, Strontium, Arsenic, Lithium (?), Lead (?), Mercury (?), Silver (?) Companies need to take a few extra steps – they are assumed responsible.

How? Not Sure — Here are Some Ideas Trace Level or near Detection Limit may be related to contamination during field sampling or laboratory testing, but this does not appear to account for levels at or above the drinking water standard. Other Sources Private Wells Not Regulated and there are no plumbing codes. Sources – PVC plastic piping used in the home. Sources – Drop Pipe and Delivery Piping used in the well. This is only a hypothesis. Sometimes we also see hits for Vinyl Chloride and Toluene (What the electric Tape !!!!)

Baseline Testing

- Baseline Testing
 - ◆ Proper Well Purging, Field Monitoring, and Sampling
 - ◆ Documenting Existing Conditions and Well or Water Source Information
 - ♦ Chain-of-Custody Protocols
 - ◆ Using a Certified Lab / Using Certified Methods
 - Picking Water Quality Parameters