BMP #: Infiltration Trench

An Infiltration Trench is a "leaky" pipe in a stone-filled trench with a level bottom. An Infiltration Trench may be used as part of a larger storm sewer system, such as a relatively flat section of storm sewer. Or it may serve as a stormwater system for a small area, such as a portion of a roof or a single catch basin. In all cases, an Infiltration Trench must be designed with a positive overflow.

Key Design Elements
- Continuously perforated pipe set at a minimum slope in a stone filled, level-bottomed trench
- Limited in width (3 to 8 feet) and depth of stone (6 feet max. recommended)
- Trench is wrapped in non-woven geotextile (top, sides, and bottom)
- Placed on uncompacted soils
- Minimum cover over pipe is 12-inches
- A minimum of 6" of topsoil is placed over trench and vegetated
- Positive Overflow always provided

Potential Applications
- Residential Subdivision: YES
- Commercial: YES*
- Ultra Urban: YES*
- Industrial: YES*
- Retrofit: YES
- Highway/Road: YES*

* With consideration of hotspots

Stormwater Functions
- Volume Reduction: Medium
- Recharge: High
- Peak Rate Control: Medium
- Water Quality: High

Pollutant Removal
- Total Suspended Solids: x
- Nutrients: x
- Metals: x
- Pathogens: x

Other Considerations
- Soil Investigation Required
- Guidelines for Infiltration Systems Apply
Description

An Infiltration Trench is a linear stormwater BMP consisting of a continuously perforated pipe at a minimum slope in a stone-filled trench. Usually an Infiltration Trench is part of a conveyance system and is designed so that large storm events are conveyed through the pipe with some runoff volume reduction. During small storm events, volume reduction may be significant and there may be little discharge. All Infiltration Trenches are designed with a positive overflow.

An Infiltration Trench differs from an Infiltration Bed in that it may be constructed without heavy equipment entering the trench. It is also intended to convey some portion of runoff in many storm events.

All Infiltration Trenches must be designed in accordance with the Guidelines for Infiltration Sys-
tems. Although the width and depth can vary, it is recommended that Infiltration Trenches be limited in depth to not more than six (6) feet of stone. This is due to both construction issues and Loading Rate issues (as described in the Guidelines for Infiltration Systems). Appropriate depth should be considered by the designer.

Variations

Infiltration Trenches generally have a vegetated (grassed) or gravel surface. Infiltration Trenches also may be located beneath or within roadways or impervious paved areas with proper design. The sub-surface drainage direction should be to the downhill side (away from sub-base of pavement), or located lower than the impervious subbase layer. Proper measures must be taken to prevent water infiltrating into the subbase of impervious pavement.

Infiltration Trenches may also be located down a mild slope by “stepping” the sections between control structures as shown in Figure x. A level or nearly level bottom is recommended for even distribution.

The side walls may be designed with a 2:1 slope as necessary for site or soil conditions.

![Diagram of Infiltration Trenches](image-url)
Applications

- **Direct connection of Roof Leaders**

 Roof Leaders may be directly connected to Infiltration Trenches. Roof Runoff generally has lower sediment levels and often is ideally suited for discharge through and Infiltration Trench. A cleanout with sediment sump must be provided between the building and Infiltration Trench.

- **Direct Connection of Inlets**

 Catch Basins, inlets, and area drains may be connected to Infiltration Trenches, however, sediment/debris removal must be addressed. Structures should include a sediment trap area below the invert of the pipe for solids and debris. In areas of high traffic or areas where excessive sediment, litter, and other similar materials may be generated, a water quality insert is required.

 ![Diagram](image)

 Figure __. Roof leaders connect to infiltration trench under planting area.

- **In Combination with Vegetative Filters**

 An Infiltration Trench may be preceded by or used in combination with a Vegetative Filter, Grassed Swale, or other vegetative element used to reduce sediment levels from areas such as high traffic roadways. Design must ensure proper functioning of vegetative system.

- **Other Applications**

 Other applications of Infiltration Trenches may be determined by the Design Professional as appropriate.
Design Considerations

1. Soil Investigation and Percolation Testing is required (see Section x/x)
2. Guidelines for Infiltration Systems must be met (i.e., depth to water table, setbacks, Loading Rates, etc. See Section x/x)
3. Water Quality Inlet or Catch Basin with Sump (see Sections x/x) required for all surface inlets, designed to avoid standing water for periods greater than 48 hours.
4. A continuously perforated pipe must extend the length of the trench and have a positive flow connection designed to allow high flows to be conveyed through the Infiltration Trench.
5. The slope of the Infiltration Trench bottom should be level or with a slope no greater than 1%. The Trench may be constructed as a series of “steps” if necessary. A level bottom assures even water distribution and infiltration.
6. Cleanouts or inlets must be installed at both ends of the Infiltration Trench and at appropriate intervals to allow access to the perforated pipe.
7. The discharge or overflow from the Infiltration Trench must be properly designed for anticipated flows.

Detailed Stormwater Functions

Infiltration Area:

The Infiltration Area is the bottom area of the Trench, defined as:

Length of Trench x Width of Trench = Infiltration Area (Bottom Area)

This is the area to be considered when evaluating the Loading Rate to the Infiltration Trench.

Volume:

The storage volume of the Infiltration Trench is defined as the area beneath the discharge invert. This is equal to:

Length x Width x Depth below invert x Void Ratio in Stone

The void ratio in stone is 40% for AASTO No 3. If the conveyance pipe is within the Storage Volume area, the volume of the pipe may also be included. All Infiltration Trenches should be designed to infiltrate or empty within 48 hours.

Peak Rate Mitigation Calculations:
See Section z/z in Section 8 for Peak Rate Mitigation methodology which addresses link between volume reduction and peak rate control..

Water Quality Improvement:
See Section a/a in Section 8 for Water Quality Improvement methodology which addresses pollutant removal effectiveness of this BMP.
Construction Sequence

1. Protect Infiltration Trench area from compaction prior to installation.
2. If possible, install Infiltration Trench during later phases of site construction to prevent sedimentation and/or damage from construction activity. After installation, protect sediment laden water from entering inlets and pipes.
3. Install and maintain proper Erosion and Sediment Control Measures during construction.
4. Excavate Infiltration Trench bottom to a uniform, level uncompacted subgrade free from rocks and debris. Do NOT compact subgrade.
5. Place non-woven geotextile along bottom and sides of trench. Non-woven geotextile rolls should overlap by a minimum of 24 inches within the trench. Fold back and secure excess geotextile during stone placement.
6. Install upstream and downstream Control Structures, cleanouts, etc.
7. Place uniformly graded, clean-washed aggregate in 6-inch lifts, lightly compacting between lifts.
8. Install Continuously Perforated Pipe as indicated on plans. Backfill with uniformly graded, clean-washed aggregate in 6-inch lifts, lightly compacting between lifts.
9. Fold and secure non-woven geotextile over Infiltration Trench, with minimum overlap of 12-inches.
10. Place 6-inch lift of approved Topsoil over Infiltration Trench, as indicated on plans.
11. Seed and stabilize topsoil.
12. Do not remove Inlet Protection or other Erosion and Sediment Control measures until site is fully stabilized.
13. Any sediment which enters inlets during construction is to be removed within 24 hours.

Installation of Infiltration Trench
Trench is excavated along existing roadway. Waterproofing is installed along subbase of existing roadway. Infiltration Trench is on downhill side of roadway. Infiltration Trench is installed. Infiltration Trench is paved with standard pavement material.
Maintenance and Inspection Issues

- Catch Basins and Inlets should be inspected and cleaned on an annual basis.
- The vegetation along the surface of the Infiltration Trench should be maintained in good condition, and any bare spots immediately revegetated.
- Vehicles should not be parked or driven on a vegetated Infiltration Trench, and care should be taken to avoid excessive compaction by mowers.

Cost Issues

The construction cost of infiltration trenches can vary greatly depending on the configuration, location, site-specific conditions, etc. Typical construction costs in 2003 dollars range from $4 - $9 per cubic foot of storage provided (SWRPC, 1991; Brown and Schueler, 1997). Annual maintenance costs have been reported to be approximately 5 to 10 percent of the capital costs (Schueler, 1987).

Specifications:

The following specifications are provided for information purposes only. These specifications include information on acceptable materials for typical applications, but are by no means exclusive or limiting. The designer is responsible for developing detailed specifications for individual design projects in accordance with the project conditions.

1. **Stone** for infiltration trenches shall be 2-inch to 1-inch uniformly graded coarse aggregate, with a wash loss of no more than 0.5%, AASHTO size number 3 per AASHTO Specifications, Part I, 19th Ed., 1998, or later and shall have voids \(\geq 35\% \) as measured by ASTM-C29.

2. **Non-Woven Geotextile** shall consist of needled non-woven polypropylene fibers and meet the following properties:
 - a. Grab Tensile Strength (ASTM-D4632) \(\geq 120 \text{ lbs} \)
 - b. Mullen Burst Strength (ASTM-D3786) \(\geq 225 \text{ psi} \)
 - c. Flow Rate (ASTM-D4491) \(\geq 95 \text{ gal/min/ft}^2 \)
 - d. UV Resistance after 500 hrs (ASTM-D4355) \(\geq 70\% \)
 - e. Heat-set or heat-calendared fabrics are not permitted

Acceptable types include Mirafi 140N, Amoco 4547, and Geotex 451.

3. **Topsoil**

4. **Pipe** shall be continuously perforated, smooth interior, with a minimum inside diameter of 8-inches. High-density polyethylene (HDPE) pipe shall meet AASHTO M252, Type S or AASHTO M294, Type S.

5. **Catch Basins/Inlet Boxes**
References and Additional Sources